
Planning with Hierarchical Task Networks in Video Games

John-Paul Kelly
Department of Engineering

Australian National University
Canberra, ACT

Adi Botea
NICTA and

Australian National University
Canberra, ACT

Sven Koenig
Computer Science Department

University of Southern California
Los Angeles, CA

Abstract

Artificial intelligence (AI) technology can have a dramatic
impact on the quality of a video game. AI planning methods
are useful in a wide range of game components, including
modules to control the behaviour of fully autonomous units.
However, planning is computationally expensive and the CPU
and memory resources available at runtime to a game AI
module are scarce. Offline planning can be a good strategy
to avoid a runtime performance bottleneck.
In this work we apply planning with hierarchical task net-
works (HTNs) to video games. HTNs can speed up planning
dramatically, since search is guided with human-encoded
knowledge. We describe an architecture that computes plans
offline. This can be seen as a form of generating scripts au-
tomatically, replacing the traditional approach of composing
them by hand. The results are very encouraging. Scripts are
automatically generated at a level of complexity that would
require a great human effort to create.

Introduction
Artificial intelligence can have a major impact on the quality
of a video game. AI techniques such as planning and search
can make the behavior of fully autonomous characters that
populate a game look intelligent.

Planning is computationally expensive. This issue is of
particular importance in games, where solutions have to be
available in real time and the CPU and memory resources
are limited. In this article we apply planning with hierar-
chical task networks (HTNs) (Sacerdoti 1975; Tate 1977)
to the domain of commercial computer games. HTNs are
hand-coded structures that encode knowledge about the do-
main at hand. They show how abstract tasks (e.g., eat) can
be decomposed into a sequence of more concrete tasks (e.g.,
go to restaurant, order food, enjoy food). Several decompo-
sition methods can exist for a given task. For example, it
is also possible to buy ingredients, cook, and eat at home.
Searching with HTNs explores only paths that fit into the
HTN structure, reducing the overall planning effort consid-
erably. We focus on offline planning, effectively avoiding
runtime performance bottlenecks.

Non-playing characters (NPCs) are an example of entities
under the control of the computer. Traditionally, NPCs were

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

used with the only goal of populating the background of the
game world. Their behavior was limited to basic animations,
with little or no interaction with the rest of the world. In con-
trast, intelligent NPCs could act according to a meaningful
plan and interact with each other.

As a motivating example for our work, consider the prob-
lem of modelling the behavior of NPCs. A traditional ap-
proach is to use scripts, simple plans that are precomputed
by hand and cached to be used at runtime. More recently,
runtime planning modules have been added to game engines
(Sierra 2007). Each of these have their advantages and short-
comings, and our goal is to combine the strengths of both.

A significant advantage of scripts is that they can be used
at runtime with little CPU overhead, since their creation is
performed offline. On the other hand, scripts require lots
of human effort to generate. The process is error-prone and
scripts are typically limited in size. Many scripts need to
be generated to cover a reasonable range of situations that
might occur in a game. Runtime automated planning can
compute solutions as needed, taking into account the current
state of the game and the objectives to achieve. The price is
a potentially significant computational effort.

HTNs combine the advantages of both scripting and plan-
ning. HTN planning is fast, since search is tightly guided
with human-encoded knowledge. In this work, HTNs and
scrips are related in two ways. Firstly, a hierarchical task
network can be seen as an enhanced form of a script. In-
stead of writing a complete solution, details are abstracted
away and a more general structure, which corresponds to
many problems, is cached. When a new problem needs to be
solved, computing a complete solution reuses the HTN and
adds on top of it the details specific to that instance. Sec-
ondly, plans computed with HTN planning are represented
as scripts by translating them from the planning format into
the scripting language. In this way, plans can be plugged
into the game with no need to add code to the game product.

One hierarchical task network can model the behaviour of
many types of characters, which may have high-level sim-
ilarities but differ significantly in the concrete ways they
act. Consider a scenario with creatures getting hungrier over
time. All hungry NPCs try to feed themselves, but how
exactly this happens differs from one character type to an-
other. Some human-like creatures buy food, some others
go hunting. Vampires suck the blood of their prey. The



HTN abstract task of getting food is shared by all charac-
ters. Lower-level tasks are more specialized. Adding a new
NPC type requires a straightforward refinement of the HTN
with new specialized tasks, methods and actions. An HTN
with more lower-level methods does not necessarily imply
a larger search effort. Simple preconditions that check the
type of a character can prevent the planner from trying task
decompositions that are irrelevant for the character at hand.

In many modern games, users can enhance a game with
new elements such as graphical environments, characters,
and scripts that model their behaviour. Since HTN plan-
ning needs input from expert users, an interesting question is
whether the game development community for user created
content, which is very large and heterogeneous in terms of
programming skills, would welcome such an addition to off-
the-shelf game products. We argue that HTNs would make it
into a standard game feature rather easily. Scripting has the
merit of creating a precedent in getting users accustomed to
express their input in a structured language. Moving up to
HTNs could be done with minimal user effort. If desired,
graphical interfaces can be designed to assist in generating
HTNs.

HTN planning can be applied to several classes of video
games, including real-time strategy (RTS), role playing
(RPG), and first person shooter (FPS) games. Specific im-
plementations can result in either offline or online planning
modules. As already mentioned, this paper focuses on of-
fline planning, which can be seen as an automated way of
generating scripts, scaling up to more complex scripts and
reducing the human effort.

The rest of this paper is structured as follows: We con-
tinue with related work. The next section describes our plan-
ning approach in detail. Experimental evaluation is the topic
of the second last section. The last part contains conclusions
and future work ideas.

Related Work
This section places our work into a proper context by re-
viewing related work from both academia and industry. We
start with a short survey of HTN planning then move on to
a review of controlling NPC behaviour in video games. The
idea of hierarchical task networks dates back to the work
of (Sacerdoti 1975) and (Tate 1977). SHOP2 by Nau et
al. (2003) is a successful modern planner that implements
HTNs. The basic version works for classical planning but
extensions for nondeterministic planning (Kuter and Nau
2004) and probabilistic planning (Kuter and Nau 2005) have
been introduced. Work on automatically learning parts of an
HTN such as method preconditions is reported by Ilghami et
al. (2002). Wilkins and desJardins (2001) advocate the need
for HTNs and, more generally, knowledge-based planning
in complex realistic applications. Real-life problems where
HTN planning has been successful include production line
scheduling (Wilkins 1988) and the game of bridge (Smith et
al. 1998).

In games, scripting and finite state machines are tradi-
tional approaches to controlling NPC behaviour. More re-
cently, the games industry has adopted methods based on
AI planning and scheduling. Scripting has been used in

games ranging from RPGs such as Bioware’s NEVERWIN-
TER NIGHTS to FPSs such as Epic Games’ UNREAL TOUR-
NAMENT. Scripts can be used to give NPCs simple be-
haviours. They are written offline in a high-level, game-
specific language. Scripting is relatively simple even to
people with minimal traditional programming experience.
Many NPC behaviours can be scripted, including conversa-
tion trees or general social characteristics. Scripts typically
execute sequentially in an infinite loop with the only con-
cept of state built through using local variables. When mod-
elling more elaborated scenarios, scripts quickly become
quite long and complex.

Steps have been taken towards automating script genera-
tion (McNaughton et al. 2004). SCRIPTEASE is an attempt
at simplifying the process of writing scripts through simple
pattern templates. Relatively complicated behaviours can be
created with a GUI without the need for explicitly program-
ming them. While this can reduce the development time, it
still inherits many of the complexities that come with de-
veloping scripts. The developer must still manually choose
what behaviours to initiate and when for each character,
which can quickly become very complicated as the number
of characters and complexity of the world increases.

At the moment, the use of state machines is a lot more
common than the use of planning for controlling NPC be-
haviour. Games that have implemented state machines range
from FPSs such as ID Sofware’s QUAKE series to RTSs such
as Blizzard Software’s WARCRAFT III. Some recent games
such as Bungie’s HALO 2 use hierarchical state machines
(Isla 2005). The use of state machines is regarded as less
feasible for the long term and is even proving difficult in
current generation games (Orkin 2003). A major problem is
that the complexity of state machines grows quickly when
the behaviour of a character becomes slightly more sophis-
ticated.

Different planning approaches, including simple forms
of hierarchical planning have been used to control the be-
haviour of NPCs (Munoz-Avila and Fisher 2004). This is
typically used to control opponents in First Person Shooter
style games such as Monolith’s F.E.A.R. (Sierra 2007) or
Epic Games’ UNREAL TOURNAMENT (Games 2007). In
the past, having simple behaviours such as moving between
ammo caches and chasing any opponents they encounter
was acceptable NPC behaviour in FPSs. In more modern
games, NPCs are expected to be able to coordinate as squads
and perform advanced tactics such as sending for backup or
flanking (Orkin 2006).

Another approach to controlling NPCs is scheduling as
seen in Bethesda’s THE ELDER SCROLLS IV: OBLIVION.
Each NPC has a series of tasks with scheduled times and
preconditions. For example, each day an NPC might go for
lunch at 12pm and then go to work for 4 hours if it is a
weekday (Stein 2007). This can be used in conjunction with
scripts to control more detailed or character specific actions.
This can be an effective approach but it is not without its
downsides. Manual scheduling is needed to integrate new
characters into the game world. For example, if a character
needs to buy something from a store, then the keeper of the
store needs to be there. If there are a few characters and we



Figure 1: Architecture for offline planning.

want to change the behaviour of any one of them, then we
will need to look at the schedules of all of the other charac-
ters to make sure this does not cause any conflicts. As more
characters with more complicated schedules are introduced,
this can become unfeasible.

HTN Planning in Games
The first part of this section presents an approach for au-
tomatic script generation with offline HTN planning. An
example comes next. The following part contains a few in-
sights to be considered when planning is used in games. Fi-
nally, we briefly compare our work with SCRIPTEASE, an-
other approach for automatic script generation in games.

Offline Planning
Accepting user input in the form of scripts, a standard fea-
ture of many modern games, makes the implementation of
offline planning relatively easy and natural, saving lots of de-
velopment effort. The offline planning architecture we have
used is illustrated in Figure 1. A planner solves problem in-
stances in the game domain. Solution plans are converted
into scripts. These are plugged into the game using the in-
terface that the game product offers.

In implementing the architecture, we chose the JSHOP2
planning system, a Java implementation of SHOP2 (Nau et
al. 2003) that is publicly available at http://www.cs.
umd.edu/projects/shop/. It can handle numerical

variables, making it useful to model variables such as money
amounts and hunger levels.

Our choice of using Bethesda Softworks THE ELDER
SCROLLS IV: OBLIVION as a game application is supported
by several reasons. It is a very popular game that accepts
user input in the form of scripts using an editor program
publicly available at http://www.elderscrolls.
com/downloads/updates_utilities.htm. In
this game, planning can be combined with scheduling, mak-
ing it more interesting from a research perspective. Each
NPC can have a set of AI packages and/or a script that
are used to control that NPC’s behavior. Each AI package
describes an atomic behaviour such as eating or sleeping.
Actions in our computed plans will be mapped into these
atomic behaviours, providing a mechanism for plan execu-
tion in the game world. The AI packages have precondi-
tions that can include a time range. For example, a sleep
package could be scheduled to activate from 10pm to 8am.
General scheduling is achieved using AI packages with as-
sociated time ranges. Traditionally, activation intervals are
set manually. This is in fact manual planning (i.e., select a
collection of appropriate atomic behaviours) and scheduling
(i.e., select their activation times) and our goal is to automate
this process. In this game, scripts have typically been used
to control complicated actions such as dialogue and quest
related actions. We extend the use of scripts to automatic
planning, and scheduling of actions in the form of AI pack-
ages, replacing the simple manual form of scheduling al-
ready present in the game.

A human expert designs one or more HTNs specific to
a given game and one or more problem instances. Under
this model, the problem instance must contain details of the
characters, such as what sort of tasks they can do, as well
as their initial states and any goals. JSHOP2 is run for each
problem instance. The script generator then automatically
maps the solution plans from the standard planning language
(e.g., PDDL) into the scripting language that the game ac-
cepts. Planning and script generation are performed offline.
Finally, the plans represented in the scripting language are
added to the game as new scripts.

This effort of designing an HTN is amortized over all
scripts that are generated using that HTN. We used an HTN
that divides a day into 24 discrete time units. If desired,
plans that cover several days can be obtained by chaining
plans that correspond to one day each. The final state of
a 24-hour plan is used as the initial state of the next day’s
planning task.

In our planning application, a problem state contains in-
formation such as and the amount of deer, the cost of each
trading item, an enumeration of all locations, a list of all
stores, information about what items are traded in each store,
and information about who owns each shop. In addition, a
problem state contains the states of all NPCs. NPC states
store the values of money, hunger and tiredness, a list of
tasks that each NPC can currently perform, their current ac-
tivity (e.g., working), their current location, the place where
they live, a list of items in their possesion (e.g., skins), and a
list of pending tasks.

The HTN used is partly illustrated in Figure 2. Ovals are



Figure 2: Part of the hierarchical task network designed for
the OBLIVION game.

high-level tasks and rectangles are primitive (atomic) tasks.
When refining a high-level task, the decomposition methods
are tried from left to right, until a method is found whose
preconditions match the current state. The picture at the top
illustrates four methods (alternatives) to refine the abstract
task of spending one time unit such as a game hour. If none
of the first three alternatives is selected, an atomic task is
picked at random, such that the schedule of the NPC at hand
is not left empty for that time interval.

The picture in the middle shows decomposition alterna-
tives for getting food. In the first two cases, the NPC can get
food right away by hunting or shopping, When food cannot
be obtained immediately, tasks such as learning how to hunt
or making money will help to get food in the future. Pay-
ing to learn to hunt comes up when a character only knows
how to shop but the store does not open. After a character
has waited for long enough at the store, they temporarily re-
move shopping as a valid task. If they become hungry they
need to get food via other means. The bottom part of Figure
2 shows the decomposition methods for getting money. The
most preferred method is going to work, followed by selling
skins and, as a last resort, selling other items that the NPC
owns.

In classical planning, the objectives of a planning prob-
lem are defined as reachability goals, atoms that must hold
in the final state of a plan. In HTN planning, the problem
objective can be encoded either as a reachability goal or as
an abstract task. All valid plans have to be a refinement of an
abstract task. We have taken the latter approach. The prob-
lem objective is to compute a daily schedule such that each

NPC completes tasks such as eating, sleeping, and attending
their jobs.

We have developed a script generator that maps from a
PDDL plan to OBLIVION’s scripting language. A plan is
converted into several scripts, one for each NPC involved.
Scripts should not be seen as independent from each other,
as NPCs typically interact in a plan. Actions in each script
are totally ordered. Script code will be repeatedly run
through by the game from beginning to end in a loop. To
perform the correct action, the script needs to map from
game times to time steps in the plan. The problem file will
also need to be read, enabling the script to ensure that at
the start of each day, the game state matches the initial state
in the plan. Since the input plans are correct and the envi-
ronment is assumed not to interfere with plan execution, no
error checking needs to be encoded inside a script.

The generated scripts assume that the plan sequentially
goes through the actions required of each NPC for each
game hour. As the script will be run in a loop, a switch
statement ensures that each set of actions is performed in
the correct game hour. The script ensures that the set of ac-
tions for a game hour is performed in the correct order. For
instance, first go to shop, then buy food. It also needs to
ensure that each action is run to completion and that each
action is only performed once. It does this by storing vari-
ables that keep track of the number of actions performed for
the hour as well as a flag for the last hour that had all of the
actions completed. Scripts must also encode any exchanges
of goods that occur between NPCs. This is done by sim-
ple flag based message passing. An NPC will send a mes-
sage to another NPC that he wants to perform an exchange.
The other NPC will receive this request and perform his part
of the transaction and send confirmation, at which point the
first NPC can perform his part of the transaction.

NPCs perform atomic actions in the game world using
the existing AI package framework. We created a set of AI
packages that correspond to actions that could show up in
a plan. Each atomic action in the plan is then performed by
activating the appropriate AI package. The new AI packages
have no time ranges assigned beforehand. Their activation
time is determined according to the position of the corre-
sponding action in the plan being executed at a given time.

Example
We show how the ideas presented before work on a small
example with three characters named Bob, Sven and Fred.
As Sven and Fred own one store each, they interact with
Bob via tranding transactions. For the sake of simplicity,
we focus our attention to one character (Bob) and to a few
game hours. Part of the initial state is shown in Figure 3.
The problem objective is simply stated as ((day Fred Sven
Bob)). The planner will decompose this high-level task into
a detailed schedule of all three characters over a period of 24
game hours.

Figure 4 shows a few steps of a solution plan. Bob is
asleep, then wakes up and is hungry. He has some money so
he goes to buy food from the store. The store is not open yet
so Bob must wait. The storekeeper shows up soon enough
that Bob has not yet given up and Bob eats. He then goes to



(cost food 5.0)
(cost skins -4.0)
(cost goods -50.0)
(cost learn-hunt 30.0)
(cost rent 1.0)
(shop skin-shop skins Sven)
(shop skin-shop goods Sven)
(shop food-shop food Fred)
(place Bobs-house)
(place forest)
(place skin-shop)
(place food-shop)
(deer 4.0)
(asleep Bob)
(money Bob 7.0)
(available-task Bob purchase-food

sedate-hunger)
(available-task Bob wander wander)
(available-task Bob skin get-money)
(available-task Bob sleep sleep)
(available-task Bob sell-goods get-money)
(hungry Bob 7.0)
(sleepy Bob 4.0)
(have-goods Bob)
(at Bob Bobs-house)
(lives Bob Bobs-house)

Figure 3: Part of the initial state in the running example. The
first half contains “global” information such as the cost of
food and the number of deer. The second half contains Bob’s
variables and available tasks. For simplicity, state variables
that detail Fred and Sven’s status are skipped.

make some money by going to the forest and getting some
deer pelts, before returning to town to sell them. The HTN
includes a framework of each NPC getting hungry and tired
over time. The repeated !increment-person calls correspond
to Bob getting more tired and hungry over time.

Figure 5 shows a script fragment that corresponds to the
last four steps of the plan in Figure 4. A detailed explana-
tion of the code is beyond the focus of this paper. The first
line ensures that each action is scheduled at the appropriate
time. The current variable keeps track of how many actions
have been completed in the current time period. This ensures
that the actions are done in the correct sequence. It would
not make sense to sell the skins before acquiring them for
example. The bobVar variable is simply in place to ensure
that Bob will not repeatedly start an AI package. Once Bob
moves to the forest he begins skinning. This is simply an AI
package where Bob will kill a deer. The deer has scripts so
that once dead, Bob will be informed. Bob has the skinning
variable set to 1 so a skin appears and he will move onto the
next action.

Once Bob arrives at the store, the SellSkins package ini-
tiates trade. The merchant will have scripts set up to figure
out what is being bought or sold and perform the appropri-
ate transaction. Bob has selling-skin set to 1 so the merchant
knows to buy the skin and Bob is done. Notice that the value

(!sleep Bob 5.0)
(!increment-person Bob)
(!sleep Bob 2.0)
(!increment-person Bob)
(!wake Bob)
(!add-task Bob purchase-food)
(!move Bob food-shop)
(!wait Bob food-shop)
(!increment-person Bob)
(!shop-food-service Bob)
(!increment-person Bob)
(!add-task Bob skin)
(!move Bob forest)
(!skin Bob)
(!move Bob skin-shop)
(!shop-skin-service Bob)

Figure 4: Steps of a daily plan corresponding to the begin-
ning of Bob’s schedule.

of current is incremented by the other character when the ac-
tion is complete, as Bob cannot know when this action will
complete after he initiates it. The last section of script sim-
ply ensures that once Bob has completed all of the actions,
he will not try to do them again.

Discussion
In this section we briefly present a few insights that would
need to be considered when planning is integrated in a game.

An important issue when modelling a game sub-problem
as a planning task is choosing between a static, fully observ-
able environment and an environment that can be dynamic
or partially observable or both. A trade-off to consider is that
algorithms for static and fully observable environments are
generally faster, better studied and scale up better, whereas
an environment in the second category might model a prob-
lem more realistically. In a game world, part of the prob-
lems can effectively be modeled as planning in a static en-
vironment. The previous section has shown such an exam-
ple, where NPCs interact with each other but do not inter-
act with the player character during the execution of a plan.
Other scenarios would require a dynamic environment. Ex-
amples of exogenous events include the player character’s
actions (e.g., lock a door) and natural phenomena (e.g., it
starts raining). “Fog of war”, a common expression used in
games, refers to incomplete information and partial observ-
ability. A classical example of incomplete information is an
initially unknown map in a real time strategy game. The ac-
tual topology is gradually discovered as one or more mobile
units explore new parts of the map.

Partial observability and exogenous events require a plan-
ning approach that is robust enough to handle new situa-
tions that could not be anticipated at planning time. Possi-
ble approaches from the literature that deal with incomplete
information include contingency planning (Peot and Smith
1992) (i.e., compute a tree-shaped solution and choose the
actual execution path according to the conditions at execu-
tion time), conformant planning (Goldman and Boddy 1996)



if (theTime >= 10 && theTime < 11&&
finished != 10)
if current == 0

AddScriptPackage TravelDeerForest
set current to current + 1

endif
if current == 1

if bobVar != 60
set bobVar to 60
set skinning to 1
set skinDeer to 0
AddScriptPackage skin

endif
endif
if current == 2

AddScriptPackage TravelSkinShop
set current to current + 1

endif
if current == 3

if bobVar != 70
set bobVar to 70
set selling-skin to 1
AddScriptPackage SellSkins

endif
endif
if current == 4

set current to 0
set finished to 10
set bobvar to 0

endif
endif

Figure 5: Part of a script.

(i.e., compute a linear solution that covers several possible
scenarios) and replanning. Contingency planning and con-
formant planning can be performed offline. Replanning re-
quires an online integration of the planning system and the
game engine.

In dynamic or partially observable domains, computing
a plan that is guaranteed to work in all possible situations
could be a tremendously hard task and could produce so-
lutions of large size. In contrast, online planning solves a
simpler problem each time (e.g., assume the environment
is static), and performs a replanning step when the simpli-
fied solution doesn’t match the actual game world. When
performed at runtime, a resource-intensive planning process
can become a performance bottleneck. Game AI usually
gets limited access to the memory and CPU resources, as
sophisticated graphics and sound algorithms are expensive.
Guiding search with HTNs could effectively address this is-
sue.

The development effort necessary to add planning capa-
bilities to a game is another itssue to consider. Its impor-
tance should not be underestimated in an industry with tight
deadlines, where commercial companies tend to ignore new
ideas unless they can easily be added to the project being
developed at the given time (Hopson 2006). As shown be-

fore, existing game components such as scripting and AI
packages can greatly simplify the integration of planning.
More generally, an HTN planning library could be imple-
mented as a standard plugin component, allowing develop-
ers to take advantage of the implementation without needing
extensive knowledge of the underlying model. This method
of implementation has seen some success with graphics en-
gines (Valve 2007), networking code (Gamespy 2007) and
physics simulators (Havok 2007).

Let us consider how issues such as those discussed above
apply to our approach. Producing scripts, whether automat-
ically or by hand, is an offline process. This means that it
is hard to account for the many possibilities that could be
encountered within a non-deterministic game world. While
some contingency planning is possible, it is hard to ensure
that the produced scripts will work every time; for example,
if a player went around killing characters vital to plan ex-
ecution, it would not be able to successfully execute. This
feature is inherent to offline processes. However, this does
not invalidate the idea of using offline scripting and plan-
ning in games. In our test application, the plans typically
remain valid unless another character (such as the player)
actively tries to prevent it. In a role playing environment,
there are virtual laws in place that would deter characters
(including the player) from bad behavior such as killing an-
other human-like character. This means that under normal
playing circumstances, there is little that would stop plans
that model the daily schedules of NPCs from executing suc-
cessfully.

One main advantage to using our method comes in the
form of development speed. It is possible to imitate the
behaviour of a character controlled using our method by
using the standard schedules and scripts. In terms of in
game appearance, they would be identical, but manual plan-
ning would require a tedious effort, even for problems of
moderate size. Better scripting capabilities via automated
planning translate into a better gaming experience, allowing
more controlled characters to populate a world and comput-
ing more complex plans, which cover longer game periods
and have more NPC interactions.

Comparison with SCRIPTEASE

To the best of our knowledge, the work on
SCRIPTEASE (e.g., (McNaughton et al. 2004)) is the
only research on automating script generation previously
reported in the games literature. SCRIPTEASE is a tool that
allows a user to generate scripting code through a graphical
front end. Scripting can be performed even by users with no
programming skills. The process is faster and safer, since
manual coding introduces bugs that can take a long time to
hunt down.

As an important difference from our work, SCRIPTEASE
makes no attempt at automating the planning side of script-
ing. The user is responsible to select all actions that com-
pose a script, possibly starting from a predefined pattern. Ar-
guably, SCRIPTEASE could be seen as focused on the soft-
ware engineering side of scripting rather than the artificial
intelligence part. The authors state that AI capabilities such
as learning would be a good addition to the SCRIPTEASE



NPCs Time (sec.) Nodes Plan Length
3 6.12 1108 293
4 6.49 1452 381
5 7.07 1798 469
6 7.56 2142 557
7 7.94 2486 645

15 10.83 6332 1351
20 12.47 8062 1797
40 28.57 14982 3566

Table 1: Summary of results when the number of NPCs
grows and the time interval is fixed to 24 game hours.

tool (McNaughton et al. 2004). In addition, we believe that
our work and SCRIPTEASE can be combined into a tool that
would provide access to a planning engine through a sophis-
ticated and intuitive graphical interface that would not re-
quire users to have deep planning knowledge. The GUI and
all the machinery behind it could be used to design hierar-
chical task networks, and to state the initial state and the
goals of specific planning tasks. Based on such input data,
the planning engine can compute plans and represent them
into the scripting language.

Experiments
This section contains an empirical evaluation of the imple-
mented system. Two experiments are run using the HTN
described in the previous section. The HTN consists of 19
low-level operators and 12 high-level methods. Planning for
3 NPCs over 24 hours requires a problem definition with 49
atoms in the initial state as defined in the state representa-
tion. For each new NPC, the initial state should encode its
original status (e.g., amount of money) and list of available
tasks, as shown in the second half of Figure 3 for character
Bob.

In the first experiment, problem size varies by gradually
increasing the number of NPCs from 3 to 40. Each plan
covers a period of 24 game hours. In a second experiment,
we fix the number of NPCs to 40 and gradually increase
the covered period from 4 game hours up to 24 game hours.
Tables 1 and 2 summarize the results of each experiment.
We show the number of NPCs, the search effort measured
both as CPU time and nodes, and the length of produced
plans. All tests were run on a machine with an AMD Athlon
64 X2 4200+ processor and 1 GB RAM.

The data in Tables 1 and 2 show that planning effort grows
linearly in both the number of NPCs and the number of dis-
crete time units in the planned day.

Adding a new NPC to a problem instance requires less
than 30 seconds of modifications to the problem and HTN
files. The HTN needs some values adjusted to inform it that
it is planning for an additional NPC. The problem file re-
quires a specification of the initial values of the NPC as well
as an enumeration of the tasks available to him. The initial
values for each new NPC were generated randomly.

If we need to significantly change the behaviour of an
NPC under our planning model, this simply requires chang-

Game Hours Time (sec.) Nodes Plan Length
4 12.31 2634 700
8 15.80 4570 1416

12 17.49 6566 2134
16 20.45 9086 2857
20 24.01 11126 3591
24 25.32 13614 4308

Table 2: Summary of results when the number of NPCs is
fixed to 40 and the time interval varies from 4 to 24 game
hours.

ing the description of that NPC in the problem file, then
running the planner and the script generator again. A de-
scription for the NPC contains the NPCs initial values and
an enumeration of the tasks that it can do. This manual edit-
ing of a problem definition should take less than a couple of
minutes.

Once a plan is found, the script generator will produce
scripts typically in under a second per script. The script
generated for each NPC varies between 80 and 500 lines,
depending on the number of time steps. The plans produced
are quite long but much of the plan will contain adjustment
steps for state variables in the plan space that are not relevant
to the game space. The game does not need to know exactly
how hungry an NPC is as long as the NPC is told when to
go and get food. With 40 NPCs, the total time to produce a
script for each of them starting from a plan will be less than
30 seconds for 24 time slots. In comparison, the scenario to
manually plan, then manually write a script of 500 lines and
repeat this process 40 times is extremely tedious.

Conclusion
Planning is a powerful but potentially resource-intensive
technology to add intelligent behaviour to NPCs in a game.
HTNs guide search with hand-coded knowledge, reducing
the planning effort considerably. In this paper we have intro-
duced an approach to HTN planning in the domain of video
games. Our implementation generates scripts automatically,
replacing the traditional approach to create scripts manually.
In experiments, scripts are generated at a level of complex-
ity that would require a great human effort to compose and
debug.

We are currently developing a model for online planning
with HTNs and using replanning, which will result in a stan-
dard plugin library. Other ideas for future work include ap-
plying offline conformant planning and offline contingent
planning to video games.

Acknowledgments
National ICT Australia is funded by the Australian Govern-
ment’s Department of Communications, Information Tech-
nology, and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Research
Centre of Excellence programs. Sven Koenig was on sab-
batical at NICTA when this research was performed.



References
Epic Games. Unreal tournament, 2007. http://www.
unrealtournament.com.
Gamespy. Gamespy: Multiplayer Gaming’s Homepage,
2007. http://au.gamespy.com/.
R. P. Goldman and M. S. Boddy. Expressive Planning and
Explicit Knowledge. In Proceedings of the 3rd Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems AIPS-96, pages 110–117. AAAI Press, 1996.
Havok. Titles That Use Havok Dynamics,
2007. http://www.havok.com/content/
blogcategory/29/73/.
J. Hopson. We’re Not Listening: An Open Letter to Aca-
demic Game Researchers, 2006. http://gamasutra.
com/features/20061110/hopson_01.shtml.
O. Ilghami, D. S. Nau, H. Munoz-Avila, and D. W. Aha.
CaMeL: Learning Methods for HTN Planning. In Pro-
ceedings of the International Conference on AI Planning
and Schedulling AIPS-02, pages 131–142, 2002.
D. Isla. Handling Complexity in the Halo 2 AI. In Pro-
ceedings of Game Developers Conference GDC-05, 2005.
U. Kuter and D. Nau. Forward-chaining Planning in Non-
deterministic Domains. In Proceedings of the National
Conference on Artificial Intelligence AAAI-04, pages 513–
518, 2004.
U. Kuter and D. Nau. Using Domain-configurable Search
Control for Probabilistic Planning. In Proceedings of the
National Conference on Artificial Intelligence AAAI-05,
pages 1169–1174, 2005.
M. McNaughton, M. Cutumisu, D. Szafron, J. Schaeffer,
J. Redford, and D. Parker. ScriptEase: Generative Design
Patterns for Computer Role-Playing Games. In Proceed-
ings of the IEEE International Conference on Automated
Software Engineering ASE-04, pages 88–99, 2004.
H. Munoz-Avila and T. Fisher. Strategic Planning for Un-
real Tournament Bots. In AAAI-Workshop on Challenges
on Game AI, 2004.
D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D. Wu,
and F. Yaman. SHOP2: An HTN Planning System. Journal
of Artificial Intelligence Research, 20:379–404, 2003.
J. Orkin. Constraining Autonomous Character Behavior
with Human Concepts. In Steve Rabin, editor, AI Game
Programming Wisdom 2, 2003.
J. Orkin. Three States and a Plan: The A.I. of F.E.A.R.
In Proceedings of Game Developers Conference GDC-06,
2006.
M. Peot and D. Smith. Conditional Nonlinear Planning.
In Proceedings of the International Conference on Arti-
ficial Intelligence Planning Systems AIPS-92, pages 189–
197, 1992.
E. Sacerdoti. The Nonlinear Nature of Plans. In Proceed-
ings of the International Joint Conference on Artificial In-
telligence IJCAI-75, pages 206–214, 1975.
Sierra. F.E.A.R. Available Now, 2007. http://www.
whatisfear.com/us/.

S. Smith, D. Nau, and T. Throop. Computer Bridge: A Big
Win for AI Planning. AI Magazine, 19(2):93–105, 1998.
B. Stein. The Elder Scrolls IV: Oblivion - Radiant
A.I., 2007. http://www.xbox.com/en-US/
games/t/theelderscrollsIVoblivion/
20051208-radian%tai.htm.
A. Tate. Generating Project Networks. In Proceedings
of the International Joint Conference on Artificial Intelli-
gence IJCAI-77, pages 888–893, 1977.
Valve. Source SDK Release Notes – Valve Devel-
oper Community, 2007. http://developer.
valvesoftware.com/wiki/Source_SDK_
Release_Notes.
D. Wilkins and M. desJardins. A Call for Knowledge-
Based Planning. AI Magazine, 22(1):99–115, 2001.
D. Wilkins. Practical Planning: Extending the Classical
Planning Paradigm. Morgan Kauffman, 1988.


